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Semiconducting electronic devices utilize fine control over 
the flow of charge carriers, which are injected into the semi­
conducting material through electrical contacts. The quality of 

the electrical contacts — quantified through contact resistance — is 
as important to the proper functioning of the entire device as the 
semiconductor (SC) itself. Since the early 1990s, researchers have 
explored a wide variety of electronic devices based on nanostruc­
tures with different dimensionalities, ranging from one-dimensional 
(1D) carbon nanotubes1, SC nanowires2 or 2D materials, starting 
with graphene3.

Advances in the realization of electronic devices4–6, including the 
recent demonstration of a super-steep-slope atomically thin chan­
nel interband tunnelling transistor7, optical characterization8,9 and 
material preparation10 have revived scientific interest in the sin­
gle- and few-layer form of layered transition metal dichalcogenides 
(TMDCs), a material family that has a wide range of electrical prop­
erties. This class of materials has a common chemical formula MX2, 
where M stands for a transition metal (most commonly Mo, W, 
Nb, Ta or Ti) and X is a chalcogen atom (S, Se or Te). Compounds 
based on Mo and W are the best-known examples of semiconduct­
ing TMDCs. In their single- and few-layer form they show many 
attractive features such as atomic-scale thickness and large band­
gaps (1–2 eV), leading to a high degree of electrostatic control11 and 
scalability for nanoscale transistors12, exquisite sensing capabili­
ties13, high breakdown voltages14, tunable optical properties8,9,15–17, a 
high degree of mechanical flexibility18 and the possibility of engi­
neering new materials through the realization of van  der  Waals 
heterostructures19. Other semiconducting 2D materials such as 
phosphorene20 and silicene21 are also attracting growing interest.

One of the most common electronic devices, in both the research 
and industrial environments, is the field-effect transistor (FET). 
Low contact resistance in 2D SC-based devices is critical for achiev­
ing high ‘on’ current, large photoresponse22 and high-frequency 
operation23. However, the major issue for 2D SC FET transistors is 
the existence of a large contact resistance at the interface between 
the 2D SC and any bulk (or 3D) metal, which drastically restrains 
the drain current24–26. Contacting 2D SCs presents a certain number 
of experimental and conceptual challenges. The theoretical concepts 
that underlie our understanding of conventional metal–SC contacts 
break down in the limit where the SC thickness is smaller than the 
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depletion and transfer lengths. In the 2D limit, the properties of 
the interface — the chemical interaction between the metal and the 
SC — govern everything. Substitutional doping, a common strat­
egy adopted to decrease the contact resistance in bulk SCs, is not 
applicable here because it would modify both the 2D material and 
its properties. In addition, the pristine surface (that is, no dangling 
bonds) of a 2D material makes it difficult to form strong interface 
bonds with a metal, thereby increasing contact resistance.

The quantum limit to the contact resistance (RC
min) is determined 

by the number of conducting modes within the SC channel27,28, 
which is connected to the 2D charge carrier density (n2D), yielding 
RC

min = h/(2e2kF) = 0.026/√n2D ≈ 30 Ω μm at n2D = 1013 cm–2 (ref. 29) — 
a value three orders of magnitude below the typical contact resist­
ance to monolayer MoS2. Here, h is Planck’s constant, kF is the Fermi 
wavevector and e is the electron charge. There is plenty of room for 
improvement in this respect, making it all the more important to 
study the detailed physics of contacts between metals and 2D SCs.

In this Review, we first discuss the geometry and nature of 
the interfaces between 2D materials and metal contacts. We then 
describe the charge-injection mechanisms that occur at the con­
tacts and summarize what is known about ‘Schottky barriers’ to 
2D SCs. We then discuss contact resistance and how it scales, and 
present an overview of current research in this area. Finally, we 
discuss the influence of contact resistance on spin injection into 
2D SCs. Most research into devices based on 2D SCs is carried 
out using MoS2, owing to its wide availability. Concepts and limi­
tations that we outline here can, however, be readily extended to 
other 2D SCs.

Interface geometry
There are two fundamental interface geometries (topologies) 
between bulk (3D) metals and 2D materials: top contact (Fig. 1a) 
and edge contact (Fig. 1b), which perform differently.

Pure top contacts can be made by simply avoiding contact 
between the metal and the edges of the 2D material30. However, the 
formation of a pure edge contact using standard lithographic tech­
niques is difficult in a single- or few-layer 2D material, owing to its 
atomically thin body; so far, only one example has been reported31 of 
a purely edge-contacted graphene monolayer. In most experiments, 
contacts to 2D materials are a combination of these two geometries.
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Contrary to the case of bulk (3D) SCs (Fig.  2a,b), the pristine 
surfaces of 2D materials do not tend to form covalent bonds. The 
interfaces between metals and 2D materials in the top-contacted 
configuration can therefore only be formed by a van der Waals 
(vdW) gap in most situations (Fig.  2c). As shown in Fig.  2d, the 
vdW gap in such top-contact interfaces acts as an additional ‘tun­
nel barrier’ for carriers, before the inherent Schottky barrier (SB)32. 
The tunnel barrier greatly reduces the charge injection from metals, 
which results in higher contact resistance.

One option to overcome this vdW gap is to take advantage of 
edge contacts. In fact, edge contacts to monolayer graphene have 
been modelled33 and shown31 to perform better than top contacts. 

Density functional theory (DFT) has shown that edge contacts lead 
to shorter bonding distance with stronger hybridization (orbital 
overlap) than top contacts, and transport simulations show that the 
incorporation of additional interfacial species (such as oxygen) can 
help to improve bonding and increase transmission31. The reported 
contact resistance for a Cr edge contact with monolayer graphene 
is about 150 Ω μm, which is in good agreement with the value of 
118 Ω μm predicted from simulations31. For TMDC SCs, edge con­
tacts can also be advantageous compared with top contacts. This has 
been verified by DFT simulations for both monolayer32,34 and multi­
layer TMDCs35. The main reasons are the stronger orbital overlaps 
and the reduction of tunnel barriers.

Edge contacts are particularly relevant to multilayered 2D mate­
rials36 owing to the large conductivity anisotropy of 2D materials 
between the in- and out-of-plane directions. A model accounting 
for both top and edge contacts to multilayer graphene37 showed that, 
in this case, edge contacts significantly reduce the overall contact 
resistance36. Another model, based on a resistor network and con­
sidering the back-gate screening effect38, has been used to compare 
top- and edge-contacted multilayer graphene devices. Using this 
model, the extracted edge contact resistance from experiments is 
150–360 Ω μm for each graphene layer, which is relatively small com­
pared with the tunnelling resistances between each layer38. Similar 
work has been reported39 in which the currents flowing through the 
graphene surface and edges were theoretically and experimentally 
investigated by patterning graphene under the contact metal with 
different perimeter-to-area ratios.

Nevertheless, as mentioned previously, most practical contact 
structures involve both the edge and the top surface of the 2D 
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Figure 1 | Interface geometries of metal–2D contacts. a, Top-contact 
configuration. b, Edge-contact configuration.
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material, with the top surface having a greater contribution due 
to the large surface-area-to-edge-area ratio of the contact. Hence, 
other than optimizing the edge contacts, the contact resistance can 
be improved by reducing the tunnel barrier at the top surface. This 
can be achieved by hybridization between atoms of contact met­
als and 2D SC surfaces. DFT simulations show that specific met­
als can form covalent bonds to 2D SC surfaces (Fig. 2e), and hence 
eliminate the vdW gap; for example, Ni for graphene40, Ti for MoS2 
(refs 34,41), Pd for WSe2 (ref. 34), Mo/W for MoS2/WSe2 (refs 32,42) 
and Ti2C (a 2D metallic material) for MoS2 (ref. 43).

Strong hybridization can also distort the properties of 2D 
SCs below the top contacts (especially for a monolayer)42. This 
can modify the sheet resistance of 2D SCs below the contacts 
(ρ2D

contact), thus causing a change in contact resistance (the calculation 
of which will be discussed in a later section). It should be noted 
that hybridization can both increase and decrease ρ2D

contact. DFT pre­
dicts that selected metals such as Ti and Mo create nonlocalized 
overlap states in the original bandgap of MoS2 (ref.  32), which 
effectively turns MoS2 under the contact into a new metallic com­
pound (Fig. 2f). In such a situation, ρ2D

contact reduces. On the other 
hand, if the monolayer is partially metallized, ρ2D

contact may increase 
owing to localized states.

It is worth noting that the DFT predictions for cases of strong 
hybridization (Fig. 2f) are based on the assumption of perfect inter­
faces. In practice, close-to-perfect interfaces require the removal or 
prevention of surface impurities (such as resist residues), as well as 
an annealing process. For example, in graphene, during annealing, 
the carbon atoms can dissolve into the contact metal (Ni or Co) and 
thus form strong covalent bonds, which contribute towards a much 
smaller contact resistance44.

For multilayer TMDC SCs, only the top layer can be hybrid­
ized by metal top contacts, and thus only the vdW gap between the 
metal and the top layer of the TMDC is eliminated, as predicted by 
DFT35,42. The vdW gaps between the bottom layers still exist. Hence, 
to improve the carrier injection into the bottom layers, it is preferable 
to have edge contacts with all layers.

Although a number of selected metals form strong hybridiza­
tion at interfaces and therefore suppress the tunnel barrier, Fermi 
level pinning occurs due to the work function of the metal layer at 
interfaces changing (into the metal–MoS2 alloy’s work function)32 as 
well as the creation of gap states from the weakened intralayer S–Mo 
bonding45. Such effects can significantly impact the Schottky barrier 
height (SBH).

Apart from 3D metals, one must also consider the possibility 
of contacting 2D SCs using other (or the same) low-dimensional 
materials. ‘Native’ chemical bonds are expected at such interfaces. 
For example, because the carbon family includes both metallic allo­
tropes (such as metallic carbon nanotubes (CNTs), graphene and 
wide graphene ribbons) and semiconducting allotropes/structures 
(such as semiconducting CNTs, graphene nanoribbons (GNRs) and 
vertically biased AB-stacked bilayer graphene), one can first fabri­
cate semiconducting (or metallic) carbon and then tune one side 
to be metallic (or semiconducting). Relevant theoretical studies 
include the CNT/graphene interface46 (Fig. 3a), the graphene/GNR 
interface46,47 (Fig. 3b) and the monolayer/multilayer graphene inter­
face48. The bonds at such interfaces are native sp2 carbon–carbon 
bonds — the same as the bonds inside both the metallic and the 
semiconducting sides — resulting in a ‘seamless’ contact between 
the two.

In a recent study47, an all-graphene circuit scheme based on 
seamless contacts was proposed and evaluated by numerical simula­
tion. The reported seamless contacts, in which both contacts/inter­
connects (wide graphene) and transistors (GNRs) are envisioned to 
start from a single sheet of graphene, greatly reduced the contact 
resistance (down to 0.1 kΩ μm) and improved circuit performance 
in terms of noise margin, speed and power consumption.

The concept of seamless contacts from such all-graphene circuits 
can also be adapted to other 2D SCs (Fig. 3c). In recent studies49,50, 
contacts between metallic 1T-MoS2 and semiconducting 2H-MoS2 
have been fabricated using phase engineering49,51 (changing 2H 
phase into 1T phase). The resulting contact resistance of 0.2 kΩ μm 
is the lowest ever reported for this material. Another option would 
be to grow metallic and semiconducting TMDCs in sequence by 
chemical vapour deposition. Further theoretical studies are needed 
to explore this seamless contact scheme on 2D materials other 
than graphene.

Charge-injection mechanisms
There are two mechanisms by which charge can be injected into a 
SC: thermionic emission over the SB, and field emission (tunnel­
ling) across the SB (Fig.  4a). The thermionic emission–diffusion 
theory52 describes the current–voltage characteristics of a metal–SC 
junction as a function of SBH. Carrier recombination can also be 
a current-limiting process if an inversion layer is present near the 
contact. This is mostly the case in low-bandgap SCs (easy to form an 
inversion layer) such as Ge nanowires53, and could be significant in 
black phosphorus (which has a small bandgap of 0.3 eV).

In TMDCs we deal mostly with thermionic emission at low dop­
ing, with thermionic field emission starting to contribute as doping 
increases (Fig. 4a). This is similar to the case of small geometry silicide 
contacts in advanced complementary metal–oxide–semiconductor 
(CMOS) technologies54.

Contrary to the bulk case (Fig. 2a,b), where the diffusion region B 
extends both laterally and vertically into the SC, in a metal–2D SC 
junction with no hybridization (Fig. 2c,d and Fig. 4a), the position 
of the bands vary only laterally, so that charge carriers injected far 
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Figure 3 | Various ‘seamless’ contact schemes. a, CNT–GNR contact. 
b, Graphene–GNR contact. c, Metallic TMDC–semiconducting TMDC 
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from the contact edge first encounter the flat-band region B before 
the diffusion region Bʹ32 (Fig. 2c,d). In this case, the relative contri­
butions from thermionic emission and tunnelling become difficult 
to predict.

Because charge injection in 2D SCs strongly depends on the SBH, 
knowledge of its value and how to alter it would allow the process to 
be optimized. In the ideal case, the SBH qϕB0 between a metal and 
a SC is determined by the difference qϕB0 = q(ϕm – χ) between the 
metal’s work function qϕm and the SC’s electron affinity qχ, which 
is also referred to as the Schottky–Mott rule52 (q is the elementary 
electric charge). In reality, however, the Fermi level at the metal/SC 
interface is often pinned. We can quantify this by inspecting the SBH 
dependence on ϕm, given by S = dϕB0/dϕm, with S = 1 corresponding 
to the ideal case or Schottky limit, and S ≈ 0 corresponding to that 
of a pinned Fermi level. The origin of this pinning in metal/bulk SC 
interfaces is the presence of metal-induced gap states55. For metal 
contacts to 2D SCs, as discussed in previous sections, the presence 
of a metal–MoS2 alloy with a different work function32 and the crea­
tion of gap states from the weakened intralayer S–Mo bonding45 
contribute to the pinning. The resulting reduced tunability of the 
SBH reduces the efficacy of engineering ohmic contacts by choice of 
the contact metal (or work function) alone.

Extraction of the Schottky barrier height
The most common way of extracting the SBH is to measure the 
activation energy in the thermionic emission regime. In a SB FET 
geometry, two Schottky diodes connected back-to-back are situated 
at the source and drain. The reverse-biased contact (the source side 

of an n‑type SB FET; Fig. 4a) consumes most of the voltage drop and 
dominates the transistor behaviour. The current density injected 
through a reverse-biased SB is:

J = A*Tα exp 1– exp –– qϕB0
kBT kBT

qV � (1)

where A* is the Richardson constant and can be derived for 3D and 
2D SCs, ϕB0 is the SBH, α is an exponent equal to 2 for bulk SCs and 
3/2 for 2D SCs,V is the applied bias52,56, T is temperature and kB is 
the Boltzmann constant. For qV >> kBT, equation (1) simplifies to:

J = A*Tα exp – qϕB0
kBT

� (2)

The transistor behaviour in the sub-threshold regime (small gate 
voltage, Vg) (Fig. 4a, bottom) therefore follows57:

J = A*Tα exp – EA
kBT

� (3)

where EA = qϕB0 + EC
∞ – EC

0 is the total activation energy that charge 
carriers must overcome to access the channel, and EC

∞ – EC
0 is the dif­

ference between the conduction band minimum in the bulk and at 
the interface (Fig. 4a), due to upward band bending. The so-called 
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flat-band condition EC
∞ – EC

0 = 0 is realized when Vg = VFB (Fig. 4a, 
centre band diagram), where VFB is the flat-band voltage. As long as 
Vg < VFB, the activation energy EA depends linearly on Vg:

EA = qϕB0 – (1 + Cit / Cox)–1 (Vg – VFB)� (4)

where Cox is the gate oxide capacitance and Cit is the interface 
trap capacitance24.

Increased doping pushes the system from the flat-band condi­
tion into a regime where tunnelling contributes (Fig. 4a, top). In this 
regime, the temperature dependence should deviate from the above 
equations and EA will no longer depend linearly on Vg. 

To extract the SBH, we identify the voltage at which EA stops 
depending linearly on Vg (Fig. 4b), given by EA = qϕB0. This method 
was used in ref. 24 to extract the SBH between MoS2 and different 
metals. A variant of this method takes care (to first order) of SB 
lowering by using58:

J = A*Tα exp – (ϕB0 – V/n)q
kBT

� (5)

where the ideality factor n accounts for barrier lowering due to 
image charges. The activation barrier at zero bias is then linearly 
extrapolated from the activation energies obtained at finite biases 
(Fig.  4c). Several studies have used this second method for MoS2 
(refs 58–61). 

When using this method, it is important to remember that the 
activation energy and the SB are not the same thing. They can be 
identified only when the flat-band condition is met, and not for 
every value of Vg. The channel resistance62 contributes signifi­
cantly to the observed temperature dependence. When the MoS2 
channel is gated beyond the metal–insulator transition, its resist­
ance lowers with decreasing temperature63. The total (channel plus 
contact) resistance can then also decrease — this should not be 
misinterpreted as a negative SB.

The SBH can also be extracted in the thermionic field emission 
regime. This method was used in refs 64,65 and seems to describe 
quite well the injection of electrons into WSe2 from ionic-liquid-
gated contacts64. Other methods that have been used to extract 
the SBH in 2D SCs include ultraviolet and X-ray photoelectron 
spectroscopy66–69, which measures the band bending, and scan­
ning tunnelling spectroscopy of Au nanoparticles deposited on top 
of MoS2 (refs 70,71). Finally, some techniques that could in future 

be employed for TMDCs include internal photoemission72,73 and 
C–V measurements30.

Figure 5 plots SBH values between multilayer MoS2 and different 
metals24,60,70,74 against the corresponding metal work functions. In 
the limit of 1–3 layers, the SBH is expected to depend strongly on 
the number of layers because the bandgap increases as the thickness 
is decreased. Figure 5 therefore only compares values of SBH that 
were obtained on thicker (from 2 nm to bulk) layers. As was shown 
in ref. 24, in this range there is no significant dependence of the SBH 
on MoS2 thickness. It can be seen from Fig. 5 that the Fermi level is 
pinned to around 100 meV below the conduction band, and that 
the SBH depends weakly on the metal’s work function (S = 0.09). 
This is in contradiction with early results from X-ray photoelectron 
spectroscopy measurements, which indicated that the SBH for bulk 
MoS2 is in the Schottky limit (S = 1)66.

A recent scanning tunnelling microscopy investigation offers 
one possible explanation for this discrepancy75. The MoS2 surface 
hosts a high density of metallic defects that are likely to be clusters 
of sulphur vacancies. These defects are associated with variations 
in the Fermi level as large as 1 eV and are believed to shunt the 
pristine regions and thus strongly influence electrical properties. 
The SBH values derived from electrical measurements can there­
fore be significantly lower than those measured with ultraviolet 
and X-ray photoelectron spectroscopy. These observations are also 
in line with previous observations of widely varying SBH in Au 
nanoclusters evaporated onto MoS2 (ref. 71). SBH inhomogenei­
ties can also explain76 the apparent temperature dependence of 
SBH and ideality factor in graphene–MoS2 (ref. 77) and In–WSe2 
(ref. 78) contacts.

WSe2 was also investigated by scanning tunnelling micros­
copy79 and, although similar structural defects were present, no 
metallic defects were found. This could explain why contacts to 
WSe2 are often much more resistive. Ultraviolet and X-ray photo­
electron spectroscopy analysis has revealed that, like MoS2, the 
SBH for WSe2 approaches the Schottky limit67–69 — a fact supported 
by the high sensitivity of the SBH to graphene’s work function in 
graphene–WSe2 contacts64.

Decoupling the metal from the SC surface decreases the amount 
of Fermi level pinning and has a number of positive effects. It was 
recently reported that an intervening oxide58,60,61,80 or graphene81 
layer between the metal and MoS2 significantly reduces the contact 
resistance and SBH.

Fermi level pinning is also critical because it impacts the possi­
bility of realizing FETs with both polarities. FETs made of (naturally 
n‑doped) mono- and multilayer MoS2 exhibit n‑type behaviour 
with all metals, with the notable exception of MoOx contacts to 
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multilayer MoS2 (ref. 82). In WSe2 FETs the situation is more con­
trasted, with reports of clear n‑type transport in monolayers with 
Al, Ti, Ag, In (ref. 6) and Au (ref. 83), and clear p‑type transport 
with Au (ref. 84), Pd (ref. 85) and Ag (ref. 86). Finally, owing to its 
very high work function, MoOx seems to be the best hole injector 
for both multilayer MoS2 and WSe2 (refs 79,82).

Contact resistance scaling
The top contact is the most common contact geometry in use today. 
In the weak-coupling limit, the contact resistance is a combination 
of the metal/SC interface resistivity rC (expressed in ohms square 
metre; Ω m2) and the SC sheet resistivity ρ2D (expressed in ohms per 
square or Ω ☐–1)87. If the contact is diffusive — that is, if the charge 
carriers are scattered many times within the SC before being kicked 
out of the SC and into the metal — then the interface can be mod­
elled as a resistor network (Fig. 6). This is the so-called transmission 

line model88,89, which gives the following expression for the contact 
resistance RC (in Ω m):

RC = ρ2D rC coth rC

ρ2D
l � (6)

where l is the contact length. It can be seen that the dependence 
of RC on l is nonlinear because of current crowding. For contact 
lengths much larger than the transfer length LT = √(rC/ρ2D), where 
LT is the average distance that an electron (or hole) travels in the 
SC beneath the contact before it enters the contact, the expression 
for the contact resistance becomes RC = √(ρ2DrC) (in units of Ω m) 
and is no longer dependent on the contact length. In some reports 
the ‘as-measured’ resistance is referred to as the ‘contact resistance’, 
in which case the so-called contact resistivity is expressed in units 
of Ω m. The quantity ‘resistance × contact area’ (in units of Ω m2) is 
sometimes also used to characterize contacts, especially when con­
tacts exhibit a significant dependence on contact length l (when l 
and LT are of the same order of magnitude)90.

In graphene, the diffusive approximation breaks down due to the 
longer electron mean free path, which calls for a ballistic treatment of 
the contact resistance91. In TMDCs, the much lower mean free path 
implies that the transmission line model can be applied, provided 
that the resistivity of the portion of semiconducting material under 
the contact (ρ2D

contact), and not the resistivity of the semiconducting 
channel (ρ2D

channel), is used in place of ρ2D in equation (6). Note, how­
ever, that this approach cannot accurately model metal contacts to 
multilayers owing to the greater impact of edge contacts36,37.

The transfer length has been studied in monolayer92 and 2L–6L 
(ref. 62) MoS2. A value of LT = 600 nm was found92 in the monolayer 
case, assuming ρ2D

contact  =  ρ2D
channel. Using a more elaborate measure­

ment62 similar to a four-terminal Kelvin resistor scheme described 
in ref. 87, one can accurately determine both ρ2D

contact and rC. A value of 
LT = 20–70 nm was found for bilayer MoS2 with Ti contacts and up 
to 200 nm in 6L MoS2 (ref. 62). This discrepancy indicates that the 
assumption ρ2D

contact = ρ2D
channel fails in the case of atomically thin chan­

nels owing to the strong influence of the metallic electrode on the 
channel underneath.

Experimental review of contact resistances
Figure 7 shows the contact resistances of 2D SCs found in the lit­
erature. From an experimental point of view, the contact resistance 
depends mainly on three parameters: contact metal, ρ2D

contact and 
number of layers. This makes it difficult to compare contact resist­
ance values found in the literature because available data sets often 
differ by more than one parameter. Although results obtained using 
different metals are available, from this meta-analysis it is difficult 
to draw clear conclusions as to which metal yields the best contact 
to any given material. We nonetheless indicate the contact metal 
used in each study. Figure  7a shows the minimal RC values from 
several studies on MoS2 as a function of number of layers35,42,49,62,92–98. 
Despite the scatter in the data, there is a clear trend of decreasing 
RC with increasing thickness. This comes as no surprise because 
the larger bandgap in thinner flakes (red dashed line in Fig. 7a) is 
expected to give rise to larger SBs.

A better comparison involves contact resistances measured 
at similar sheet resistances. We do not have access to the values 
of ρ2D

contact, but using the channel resistivity ρ2D
channel (Fig.  7b) instead 

should provide a more reliable comparison between contacts. Each 
curve in Fig. 7b corresponds to a back-gate voltage sweep, wherein 
the back gate dopes both the channel and the contact areas. We 
assembled data points from a set of studies reporting both contact 
resistance and total transistor resistance (in some cases four‑probe 
resistance), and in which L >> LT, so that contact length is irrelevant. 
The channel resistivity was extracted by subtracting the contact 
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resistance from the total resistance and renormalizing with the 
channel’s aspect ratio: ρ2D

channel = (Rtotal – Rcontacts)W/L, where L and W 
are the length and width of the channel, respectively

We plot the results obtained on different TMDCs and black phos­
phorus, mono- and multilayer, before and after molecular or electro­
lyte gating of the channel, as well as the 2015 silicon-on-insulator 
target values according to the 2012 International Technology 
Roadmap for Semiconductors (ITRS). The significance of this repre­
sentation is evident if one compares the data from ref. 92 and ref. 93: 
in Fig. 7a, the minimum RC (monolayer case) seems to be lower for 
ref.  93, but Fig.  7b reveals that this is only due to higher doping. 
Actually, for a given value of sheet resistivity, RC is lower in ref. 92.

Figure  7b reveals several interesting things. First, it confirms 
that, at constant sheet resistivity, the contact resistance decreases 
with increasing MoS2 thickness97. We can also see that in many cases 
(thick MoS2, WS2, WSe2 and black phosphorus), RC scales as √ρ2D

channel 
(dash–dot line), which indicates that the transmission line model 
(equation (6)) applies reasonably well even if we use ρ2D

channel instead of 
ρ2D

contact. Interestingly, few-layer MoS2 (refs 93,97) displays a stronger 
dependence on ρ2D

channel, compared with multilayers94,97. This could 
indicate that, in this particular case, the assumption ρ2D

contact ≈ ρ2D
channel is 

not valid because of possible MoS2 band structure distortion by metal 
orbitals and Fermi level pinning under the contacts. In comparison, 
monolayer WS2 with Au contacts99 displays a much higher RC but it 
follows roughly √ρ2D

channel, which may indicate a weaker coupling to the 
metal compared with MoS2.

Molecular and electrolyte doping of the channel have often been 
used to decrease the contact resistance94,95 (Fig. 7a). Figure 7b shows 

that this effect is partially due to decreased channel resistivity. Yet 
this cannot be the only effect, otherwise data before and after dop­
ing would fall on a straight line. This reflects the enhanced contribu­
tion from tunnelling at the contact edges as the SB is thinned down, 
which seems particularly strong in WSe2 (refs 64,100).

By far, the lowest contact resistances have been obtained using 
phase engineering on few-49 and single-layer50 MoS2. The local con­
version of MoS2 from the semiconducting 2H phase to the metal­
lic 1T phase under the metal contacts results in seamless contacts 
with resistances as low as 200 Ω μm in very resistive devices, thus 
pushing the performance of TMDC-based transistors closer to the 
quantum limit27–29.

Graphene is a promising candidate to contact 2D SCs64,101–103, and 
it can be used to realize purely 2D circuits103. Another advantage 
of graphene is the tunability of its work function by electrostatic 
doping, which makes it a versatile contact metal64. The interface 
between MoS2 and graphene was recently found96 to yield very low 
RC, as well as reducing RC with decreasing temperature in ultraclean 
MoS2 samples. Once again, this result can be understood in the 
framework of the transmission line model: in these high-mobility 
devices, the sheet resistivity drops by several orders of magnitude 
as the temperature is lowered, which in turn affects the contact 
resistance. Figure 7b shows the data from ref. 96 at T = 300 K and 
T = 100 K. The two data sets can be roughly linked by the dash–dot 
line, which indicates that equation (6) describes the decreased con­
tact resistance. When compared with other metals at comparable 
sheet resistivity97, however, graphene performs well but is not signif­
icantly better. One intrinsic limitation of graphene–TMDC contacts 
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is that the vdW gap between graphene and MoS2 is about 0.33 nm, 
as shown by DFT simulations104, which is larger than that in typical 
metal–MoS2 contacts (such as 0.15 nm in Ti–MoS2; ref. 32).

Graphene can also be used as a buffer layer between MoS2 and a 
bulk metal. It has been demonstrated81 that using a layer of graphene 
between multilayer MoS2 and Ni contacts significantly reduces 
the SBH, resulting in a 20-fold improvement of the contact resist­
ance and yielding one of the best-ever reported contact resistances 
with TMDCs. This promising result calls for more experiments, 
in particular with single- and few-layer TMDCs. Finally, note that 
although excellent contact resistances were recently achieved by 
edge-contacting graphene31, so far the only reported attempts of 
edge-contacting TMDCs have produced very resistive contacts105.

As we have seen, when scaling devices we must consider the 
existence of a finite ‘transfer length’ within which charges are 
injected. Another limitation comes from the requirement of ‘ohmic’ 
behaviour. For a FET to operate properly and without nonlinearities 
in the transistor output, the contact resistance RC should be a small 
fraction of the total resistance. For example, the ITRS 2012 require­
ment for low-standby-power silicon-on-insulator FETs, a geometry 
close to FETs based on 2D SCs, is that the total contact resistance 
should be down to 20% of the total resistance by 2015. As a conse­
quence, RC should scale with channel length. The dashed black line 
in Fig.  7b depicts this criterion for a channel length of 22  nm. It 
is noteworthy that the performance of 1T contacts49 are compliant 
with the ITRS 22-nm-node requirement.

Spin injection
Not all applications require minimal contact resistance; a prime 
example of this is the field of spintronics, in which the criterion 
for success is impedance matching rather than minimizing contact 

resistance. Combining broken inversion symmetry and strong 
spin–orbit coupling in monolayer TMDCs leads to an interesting 
spin-split valence band, which enables the electrical manipulation 
of spins106–108 and makes semiconducting TMDCs an interesting 
material family for spintronics. Calculations have also predicted 
giant magnetoresistance in Fe/MoS2/Fe sandwich structures109. So 
far, however, the realization of spin injection from ferromagnetic 
contacts into TMDCs remains elusive. In this section we will briefly 
discuss the conditions that must be met, with regard to the contacts, 
to realize spin injection in TMDCs.

The simplest spintronics device is the ‘spin valve’, in which two 
ferromagnetic electrodes, bridged by a non-magnetic material, are 
polarized either parallel or antiparallel to each other. The magneto­
resistance ratio ΔR/R between these two configurations is the fig­
ure of merit for this device. The current flow can be represented by 
a resistor network, with two parallel current paths corresponding 
to the two spin channels110 (Fig. 8a). It can thus easily be seen that 
the magnetoresistance ratio drops when the resistance of the SC 
becomes large. The injection of a spin-polarized current into a SC is 
therefore hampered by the conductivity mismatch between the SC 
and the (usually metallic) ferromagnetic electrodes111.

The most common way around this problem is to modulate 
the contact resistance by introducing tunnel barriers at the con­
tacts112,113. Tunnel barriers also have a spin-dependent resistance 
and can thus play the role of R and R in Fig. 8a, with arbitrar­
ily high resistances. However, for very high resistances, the tran­
sit time of electrons becomes too long. Because of this, the contact 
resistance of the barriers must be well adjusted so that a significant 
magnetoresistance signal can be observed.

The magnitude of the magnetoresistance signal as a function of 
contact resistance can be calculated using the approach proposed 

Introducing the resistivity of the ferromagnetic electrodes ρF, 
contact resistance rC and the spin asymmetry coefficients β and 
γ of the electrodes and tunnel barriers, respectively, defined 
as ρF

()  =  2ρF*(1  –  (+)  β) and rC
()  =  2rC*(1  –  (+)  γ), where 

ρF = ρF*(1 – β2) and rC = rC*(1 – γ2), the relative magnetoresistance 
ΔR/R is given by113:

2(βrF + γr*)2

2

lSC
L

2
rSC sinh

C

(r* 1 ++rF) cosh
lSC
L+C
sfsf

r*C
rSC

ΔR = 
� (7)

and

R = 2(1 – β2)rF + rSC + 2(1 – γ2)rC + 
lSC
L
sf

*

tanh*(rF + rC) + rSC 2lSC
L

sf

(β2rF + γ2r * ) tanhC(β – γ)2rFrC + rSC 2lSC
L

sf

*

2
� (8)

where rF = ρF*lsf
F and rSC = ρSClsf

SC have units of Ω m2, lsf
SC and lsf

F are 
the spin diffusion lengths in the SC and ferromagnet, respectively 
(lsf = √Dτsf, where D = μkBT/q is the spin diffusivity, τsf is the spin-
flip time and μ is the electron mobility), and L is the length of the 
SC channel.

The spin injection efficiency, given by γ = (J – J)/(J + J), 
depends on both the polarization of the ferromagnet’s density of 
states and the amount of spin-flip during tunnelling. This can be 

as low as 1% in transparent contacts and as high as 35% in MgO 
tunnel barriers on graphene115. Note that γ might be lower in the 
case of SBs118.

The expression ΔR/R can be adapted for the case of a 2D chan­
nel using indications given in ref. 113. When the SC thickness t is 
no longer comparable to the contact width w, relaxation in the SC 
is divided by a factor w/t. We must then modify the expression by 
using rSC = ρSClsf

SCw/t = ρ2D
channellsf

SCw. Knowing that rF << rSC, rC* and 
using RC* = rC*w = RC/(1 – γ2), where RC is the contact resistance in 
Ω m, we finally have:
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This expression is very similar to that derived in ref. 117 for the 
case of graphene, except for the contribution from Rchannel ≥ Rcontact, 
which must be taken into account in our case where lsf

SC ≤ L. This 
expression is valid for a ‘confined’ geometry, in which the chan­
nel does not extend laterally beyond the electrodes. This has been 
discussed in detail in ref. 117.

Box 1 | Magnetoresistance of a 2D SC-based lateral spin valve.

REVIEW ARTICLE NATURE MATERIALS DOI: 10.1038/NMAT4452

© 2015 Macmillan Publishers Limited. All rights reserved

http://dx.doi.org/10.1038/nmat4452


NATURE MATERIALS | VOL 14 | DECEMBER 2015 | www.nature.com/naturematerials	 1203

in ref. 113 (Box 1). This gives us the magnitude of the ‘local’ signal. 
The nonlocal signal can be calculated using the approach described 
in refs 114,115. Using experimentally determined values of resistiv­
ity and valley lifetimes (since the valley and spin degrees of freedom 
are locked in monolayer TMDCs106) (Table 1), with a spin injection 
efficiency of γ = 0.5, we can estimate the magnetoresistance ratio for 
different TMDCs using equation (9) in Box 1. Note that these values 
apply only to out-of-plane spins, which are stabilized by the strong 
spin–orbit coupling.

The results are shown in Fig. 8b,c. The much larger spin diffu­
sion length in graphene (Table  1) is related to its larger mobility. 
Nevertheless, Fig. 8b shows that a measurable signal (comparable 
with those in refs 115,116, in which Lchannel = 2 μm) can be expected 
in reasonably short junctions of WS2 and WSe2 (Lchannel = 100 nm).

It is noteworthy that graphene and TMDCs lie on two differ­
ent sides of the conductivity-mismatch problem. In graphene, the 
contact resistance of direct ferromagnetic contacts is too low, and 
decoherence occurs mainly through spin escaping into the elec­
trodes. Contacts to TMDCs lie on the right side of the bell, where 
decoherence occurs inside the channel117. In graphene, introducing 
a tunnel barrier increases the contact resistance and improves the 
signal115. By a fortunate coincidence, the same tunnel barriers tend 
to decrease the contact resistance to TMDCs58,60.

Figure 8c,d focuses on the more promising materials WSe2 and 
WS2. Figure 8c shows the contact resistance as a function of sheet 
resistivity in order to compare with Fig. 7. The shaded area corre­
sponds to ΔR/R >2% for WSe2 at 4 K (note that the corresponding 
region for WS2 at 74 K would be very similar). The data for back-
gated single-layer WS2 (T = 74 K)99 lies far above the limit, whereas 
electrolyte-gated single-layer WSe2 (T  =  4  K)100 displays a much 
more appropriate contact resistance range. In addition to making 
the contact resistance lower, this kind of doping also reduces the 
width of the depletion region, thus making the contact more suit­
able for spin injection118. Chloride doping95 in 5–7 layers of WS2 
(square symbol) has also been reported as a representative example 
of molecular doping94,119–123, which is another way of decreasing RC. 
In Fig. 8d we plot the optimal contact resistance needed to achieve 
maximum magnetoresistance in WS2, along with its evolution as 
temperature is varied from 73 K to room temperature. These val­
ues were calculated using experimentally determined temperature-
dependent figures of the mobility99 and spin lifetime124. It is clear to 
see that as the temperature is increased the signal vanishes and the 
requirement on contact resistance becomes more stringent.

The use of tunnel barriers has proven to be efficient in reducing 
the contact resistance and the SB between MoS2 and ferromagnetic 
contacts58,60,61. Combined with molecular or electrolyte doping 
strategies, this could lead to the demonstration of lateral spin valves 
based on WS2 or WSe2 transistors in the near future.

Summary and outlook
Realizing good electrical contacts is a prerequisite for harnessing 
the full potential of 2D SCs. The atomic-scale thickness and pristine 
surfaces of 2D materials make it difficult to reduce the contact resist­
ance. New theoretical models and experimental approaches better 
suited to the low-dimensionality of the semiconducting material 

must be developed. Recent years have shown impressive progress 
towards solving this problem. Several routes towards high-quality 
electrical contacts have been identified, the most promising being 
the realization of seamless electrical contacts, in which native chem­
ical bonds allow much easier charge transport and thereby lower 
contact resistances. For example, metallic TMDCs can be used as 
covalently bonded electrical contacts to semiconducting TMDCs, or 
sp2 carbon–carbon covalent bonding could be retained at graphene–
GNR junctions. However, most of the results so far have been 
obtained on graphene and MoS2. Material-specific properties such 
as constituent elements and atomic defects can strongly influence 
the electrical properties of the device. In this respect, our under­
standing of these contacts is still very limited, and more systematic 
studies are needed, particularly on other TMDCs.

Spintronics, another research area that depends critically on 
controlling contact resistance, will gain prominence with the rising 
value of TMDC materials for spintronic and valleytronic applica­
tions. Initial estimates show that it should be possible to realize effi­
cient spin injection into this class of materials, giving hope that the 
first experimental realizations of this will soon be reported.
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